UT39A/B/C

Operating Manual

Modern Digital Multimeter

Safety Information

This Meter complies with the standards IEC61010: in pollution degree 2, overvoltage category (CAT. I 1000V, CAT. II 600V) and double insulation.

CAT. I: Signal level, special equipment or parts of equipment, telecommunication, electronic, etc., with smaller transient overvoltages than overvoltages CAT. II.

CAT. II: Local level, appliance, PORTABLE EQUIPMENT etc., with smaller transient voltage overvoltages than CAT. II

Use the Meter only as specified in this operating manual, otherwise the protection provided by the Meter may be impaired.

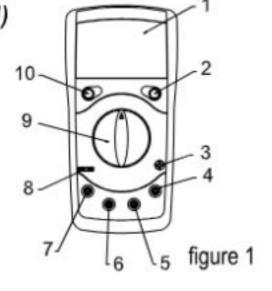
In this manual, a Warning identifies conditions and actions that pose hazards to the user, or may damage the Meter or the equipment under test.

A **Note** identifies the information that user should pay attention on. International electrical symbols used on the Meter and in this Operating Manual.

Rules For Safe Operation

Marning

To avoid possible electric shock or personal injury, and to avoid possible damage to the Meter or to the equipment under test, adhere to the following rules:

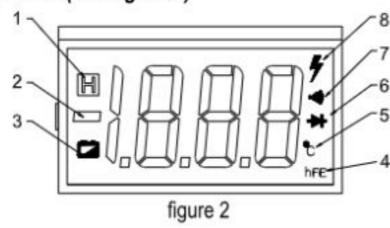

- Before using the Meter inspect the case. Do not use the Meter if it is damaged or the case (or part of the case) is removed. Look for cracks or missing plastic. Pay attention to the insulation around the connectors.
- Inspect the test leads for damaged insulation or exposed metal. Check the test leads for continuity. Replace damaged test leads with identical model number or electrical specifications before using the Meter.
- Do not apply more than the rated voltage, as marked on the Meter, between the terminals or between any terminal and grounding.
- The rotary switch should be placed in the right position and no any changeover of range shall be made during measurement is conducted to prevent damage of the Meter.
- When the Meter working at an effective voltage over 60V in DC or 30V rms in AC, special care should be taken for there is danger of electric shock.
- Use the proper terminals, function, and range for your measurements.
- Do not use or store the Meter in an environment of high temperature, humidity, explosive, inflammable and strong magnetic field. The performance of the Meter may deteriorate after dampened.
- When using the test leads, keep your fingers behind the finger guards.
- Disconnect circuit power and discharge all high-voltage capacitors before testing resistance, continuity, diodes, capacitance or current.
- · Before measuring current, check the Meter's fuses and turn off power to the circuit before connecting the Meter to the circuit.
- Replace the battery as soon as the battery indicator appears. With a low battery, the Meter might produce false readings that can lead to electric shock and personal injury.
- Remove test leads and temperature probe from the Meter and turn the Meter power off before opening the Meter case. When servicing the Meter, use only the same model number or
- identical electrical specifications replacement parts. The internal circuit of the Meter shall not be altered at will to avoid
- damage of the Meter and any accident.
- Soft cloth and mild detergent should be used to clean the surface of the Meter when servicing. No abrasive and solvent should be used to prevent the surface of the Meter from corrosion, damage and accident.
- The Meter is suitable for indoor use.
- Turn the Meter power off when it is not in use and take out the battery when not using for a long time.
- · Constantly check the battery as it may leak when it has been using for some time, replace the battery as soon as leaking appears. A leaking battery will damage the Meter.

International Electrical Symbols

曲	Deficiency of Built-In Battery	÷	Grounding
~	AC (Alternating Current)	*	Diode
$\overline{\sim}$	AC or DC	-1))	Continuity Test
	Double Insulated	-	Fuse
=	DC (Direct Current)		
Δ	Warning. Refer to the Operating	Manual	
Œ	Conforms to Standards of Euro		on

The Meter Structure (see figure 1)

- 1. LCD Display
- 2. Data Hold Button
- Transistor Jack COM Input Terminal
- Other Input Terminals
- mA Input Terminal
- 20A/10A Input Terminal Capacitance Jack
- 9. Rotary Switch 10. Power



Functional Buttons

Below table indicated for information about the functional button operations.

Button	Operation Performed
POWER	Turn the Meter on and off.
(Yellow Button)	 Press down the POWER to turn on the Meter.
	 Press up the POWER to turn off the Meter.
HOLD	 Press HOLD once to enter hold mode.
(Blue Button)	 Press HOLD again to exit hold mode.
	 In Hold mode, I is displayed and the present value is shown

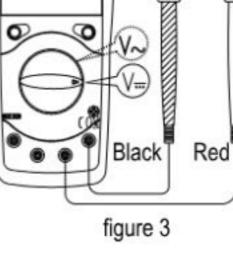
Display Symbols (see figure 2)

No.	Symbol	Meaning
1		Data hold is active.
2	_	Indicates negative reading.
3	æ	The battery is low. A Warning: To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator appears.
4	hFE	Unit of Transistor
5	°C	Centigrade temperature
6	*	Test of diode.
7	•>>)	The continuity buzzer is on.
8	4	Dangerous Voltages.

Measurement Operation

- . Make sure the Sleep Mode is not on if you found there is no display on the LCD after turning on the Meter.
- . Make sure the Low Battery Display is not on, otherwise false readings may be provided.
- Pay extra attention to the symbol which is located besides the input terminals of the Meter before carrying out measeurement.

A. DC Voltage Measurement (see figure 3)


⚠ Warning

To avoid harms to you or damages to the Meter from electric shock, please do not attempt to measure voltages higher than 1000V or 750V rms although readings may be obtained.

Take extra attention when measuring high voltages to avoid electric shock.

To measure DC voltage, connect the Meter as follows:

1. Insert the red test lead into the $\mathbf{V}\Omega$ input terminal and the black test lead into the COM input terminal.

Set the rotary switch to an appropriate measurement position in V range.

Connect the test leads across with the object being measured.

The measured value shows on the display.

Note

- If the value of voltage to be measured is unknown, use the maximum measurement position (1000V) and reduce the range step by step until a satisfactory reading is obtained.
- The LCD displays "1" indicating the existing selected range is overloaded, it is required to select a higher range in order to obtain a correct reading.

B. AC Voltage Measurement (see figure 3 with dotted line) △ Warning

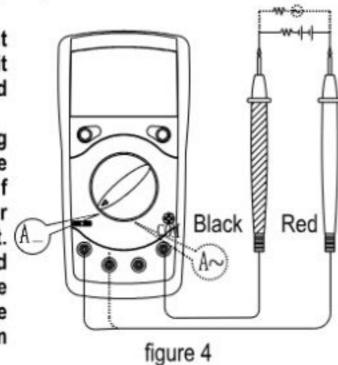
To avoid harms to you or damages to the Meter from electric shock, please do not attempt to measure voltages higher than 1000V or 750V rms although readings may be obtained.

Take extra attention when measuring high voltages to avoid electric shock. To measure AC Voltage, connect the Meter as follows:

- 1. Insert the red test lead into the $\mathbf{V}\Omega$ terminal and the black test lead into the **COM** terminal
- Set the rotary switch to an appropriate measurement position in V ~ range.
- Connect the test leads across with the object being measured.

The measured value shows on the display, which is effective value of sine wave (mean value response).

Note


- If the value of voltage to be measured is unknown, use the maximum measurement position (750V) and reduce the range step by step until a satisfactory reading is obtained.
- The LCD displays "1" indicating the existing selected range is overloaded, it is required to select a higher range in order to obtain a correct reading.
- In each range, the Meter has an input impedance of approx. 10MΩ. This loading effect can cause measurement errors in high impedance circuits. If the circuit impedance is less than or equal to $10k\Omega$, the error is negligible (0.1% or
- When AC voltage measurement has been completed, disconnect the connection between the testing leads and the circuit under test.

C. DC Current Measurement (see figure 4)

△ Warning

Never attempt an in-circuit current measurement where the open circuit voltage between terminals and ground is greater than 60V DC or 30V rms. If the fuse burns out during

measurement, the Meter may be damaged or the operator himself may be hurt.Disconnect power supply before making measurement. (A_ Use proper terminals, function, and range for the measurement. When the testing leads are connected to the current terminals, do not parallel them across any circuit.

To measure current, do the following:

Turn off power to the circuit. Discharge all high-voltage capacitors.

- 2. Insert the red test lead into the mA or 20A or 10A terminal and the black test lead into the COM terminal. When measuring current at 200mA below, insert the red test lead into mA terminal while measuring current 200mA or above, insert the red test lead into 10A or 20A terminal.
- 3. Set the rotary switch to an appropriate measurement position in A ===
- 4. Break the current path to be tested. Connect the red test lead to the more positive side of the break and the black test lead to the more negative side of the break.
- Turn on power to the circuit.

The measured value shows on the display. Note

- If the value of current to be measured is unknown, use the maximum measurement position (20A) and 20A terminal or (10A) and 10A terminal, and reduce the range step by step until a satisfactory reading is obtained.
- Replace appropriate rating fuse when the fuse is burnt. Fuse specification: 0.315A. 250V fast type fuse,φ 5 x 20mm
- UT39A/UT39B At 10A Range:For continuous measurement ≤10 seconds and interval not less than 15 minutes.
- UT39C At 20A Range:For continuous measurement ≤10 seconds and interval not less than 15 minutes
- When current measurement has been completed, disconnect the connection between the testing leads and the circuit under test.

D. AC Current Measurement (see figure 4 with dotted line) ⚠ Warning

Never attempt an in-circuit current measurement where the voltage between terminals and ground is greater than 60V or 30V rms If the fuse burns out during measurement, the Meter may be damaged or the operator himself may be hurt. Disconnect power supply before making measurement. Use proper terminals, function, and range for the measurement. When the testing leads are connected to the current terminals, do not parallel them across any circuit.

To measure current, do the following:

1. Turn off power to the circuit. Discharge all high-voltage capacitors.

- 2. Insert the red test lead into the mA or 20A terminal or 10A terminal and the black test lead into the COM terminal. When measuring current at 200mA below insert the red test lead into mA terminal while measuring current 200mA or above, insert the red test lead into 10A or 20A terminal
- Set the rotary switch to an appropriate measurement position in A~
- 4. Break the current path to be tested. Connect the red test lead to the more positive side of the break and the black test lead to the more negative side of the break.
- Turn on power to the circuit.

The measured value shows on the display.

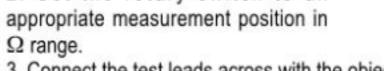
Note

- If the value of current to be measured is unknown, use the maximum measurement position (20A) and 20A terminal or (10A) and 10A terminal, and reduce the range step by step until a satisfactory reading is obtained.
- Replace appropriate rating fuse when the fuse is burnt. Fuse specification: 0.315A. 250V fast type fuse, φ5 x 20mm
- UT39A/UT39B At 10A Range:For continuous measurement ≤ 10 seconds and interval not less than 15 minutes.
- UT39C At 20A Range:For continuous measurement ≤ 10 seconds and interval not less than 15 minutes
- When current measurement has been completed, disconnect the connection between the testing leads and the circuit under test.

0

Black Red

figure 5


E. Measuring Resistance (see figure 5)

⚠ Warning

To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before () measuring resistance.

To measure resistance, connect the Meter as follows:

- 1. Insert the red test lead into the $\mathbf{V}\Omega$ terminal and the black test lead into the COM terminal.
- 2. Set the rotary switch to an

Connect the test leads across with the object being measured. The measured value shows on the display.

- Note The test leads can add 0.1Ω to 0.3Ω of error to the resistance measurement. To obtain precision readings in low-resistance, that is the range of 200 Ω , short-circuit the red and black test leads beforehand and record the reading obtained (called this reading as X). Then use the
- measured resistance value (Y) (X) = precision readings of resistance.
- For high resistance (>1MΩ), it is normal taking several seconds to obtain a stable reading.
- When there is no input, for example in open circuit condition, the Meter displays "1".
- When resistance measurement has been completed, disconnect the connection between the testing leads and the circuit under test.

F. The Model UT39C: Frequency Measurement (see figure 6) ⚠ Warning

To avoid harm to you or damages to the Meter, do not attempt to measure voltages higher than 60V in DC or 30V rms in AC although readings may be obtained.

When the frequency signal to be tested is higher than 30V rms, the Meter cannot guarantee accuracy of the measurement.

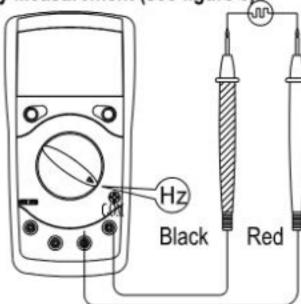


figure 6

To measure frequency, connect the Meter as follows:

- 1. Insert the red test lead into the $\mathbf{V}\Omega$ terminal and the black test lead into the COM terminal.
- 2. Set the rotary switch to an appropriate measurement position in kHz range.
- Connect the test leads across with the object being measured. The measured value shows on the display.

Note

 When Hz measurement has been completed, disconnect the connection between the testing leads and the circuit under test.

G. The Model UT39C: Temperature Measurement (see figure 7) ⚠ Warning

To avoid harm to you or damages to the Meter, do not attempt to measure voltages higher than 60V in DC or 30V rms in AC although readings may be obtained.

To measure temperature, connect the Meter as follows:

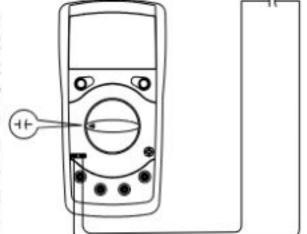
 Insert the red temperature into the $\mathbf{V}\Omega$ terminal and the black temperature probe into the COM terminal.

Set the rotary switch to °C.

Place the temperature probe to the object being measured. The measured value shows on the display.

Note

 The Meter displays "1" when there is no temperature probe connection.


The included temperature probe can only be measured up to 250°C. For any measurement higher than that, the rod type temperature probe must be used instead.

· When temperature measurement has been completed, disconnect the connection between the testing leads and te circuit under test.

H. Capacitance Measurement (see figure 8)

⚠ Warning

To avoid damage to the Meter or to the equipment under test, disconnect the tested circuit power when measuring on line (4) capacitors and discharge all high-voltage capacitors before measuring capacitance. Use the DC voltage function to confirm that the capacitor is

Black Red

figure 7

figure 8

discharged. Never attempt to input over 60V in DC or 30V rms in AC to avoid personal dangerous.

To measure capacitance, connect the Meter as follows:

- Insert the capacitor to be tested into the capacitance jack.
- Set the rotary switch to an appropriate measurement position in ⊣⊢
- Connect the test leads across with the object being measured. The measured value shows on the display.

Note

- For testing the capacitor with polarity, connect the red test lead to anode & black test lead to cathode
- When the tested capacitor is shorted or the value is overloaded, the LCD display "1".
- . To minimize the measurement error caused by the distributed capacitor, the connection should be as short as possible.
- . It is normal to take a while for zeroing when changing over the measurement range. This process will not affect the accuracy of the final readings obtained.

I. Measuring Diodes & Continuity

⚠ Warning

To avoid damage to the Meter or to the equipment under test, disconnect circuit power and discharge all high-voltage capacitors before measuring diodes and continuity.

Never attempt to input over 60V in DC or 30V rms in AC to avoid personal dangerous.

Testing Diodes

Use the diode test to check diodes, transistors, and other semiconductor devices. The diode test sends a current through the semiconductor junction, and then measures the voltage drop across the junction. A good silicon junction drops between 0.5V and 0.8V.

To test out a diode out of a circuit, connect the Meter as follows: 1. Insert the red test lead into the $\mathbf{V}\Omega$ terminal and the black test

lead into the COM terminal.

2. Set the rotary switch to -----3. For forward voltage drop readings on any semiconductor component, place the red test lead on the component's anode and

place the black test lead on the component's cathode. The LCD displays the nearest value of diode forward voltage drop.

- In a circuit, a good diode should still produce a forward voltage drop reading of 0.5V to 0.8V; however; the reverse voltage drop reading can vary depending on the resistance of other pathways between the probe tips.
- Connect the test leads to the proper terminals as said above to avoid error display. The LCD displays "1" indicating open-circuit for wrong connection. The unit of diode is Volt (V), displaying the positive-connection voltage-drop value.
- When diode testing has been completed, disconnect the connection between the testing leads and the circuit under test. Testing for Continuity

To test for continuity, connect the Meter as below:

1. Insert the red test lead into $\mathbf{V}\Omega$ terminal and the black test lead into the COM terminal.

Connect the test leads across with the object being measured.

4. The buzzer sounds continuously if the resistance of a circuit under test is $\leq 10\Omega$, it indicates the circuit is in good connection. The buzzer does not sound if the resistance of a circuit under test

is>70Ω, it indicates broken circuit. The buzzer may or may not sound if the resistance of a circuit under

test is between 10Ω to 70Ω .

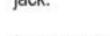
The LCD displays the resistance value of a circuit under test.

Note

. The LCD displays "1" indicating the circuit being tested is open.

 When continuity testing has been completed, disconnect the connection between the testing leads and the circuit under test.

J. Measuring Transistor (see figure 9)


To measure transistor, connect the Meter as follows: Set the rotary switch to hFE.

2. Insert the NPN or PNP type transistor to be tested into the transistor jack.

3. The measured nearest transistor value shows on the display.

Note

 When transistor measurement has been completed, remove the transistor from the transistor jack.

Sleep Mode To preserve battery life, the Meter automatically turns off if you do not turn the rotary switch or press any button for around 15 minutes. At that time, the Meter consumes around 10µA current.

figure 9

The Meter can be activated by pressing the **POWER** two times.

Accuracy Specifications

Accuracy: ±(a% reading + b digits), guarantee for 1 year. Operating temperature: 23°C ± 5°C.

Relative humidity: <75%.

Temperature coefficient: 0.1 x (specified accuracy) / 1°C.

A. DC Voltage

D	Daniel Car		Accuracy	Overland Protection	
Range	Resolution	UT39A	UT39C	Overload Protection	
200mV	100µV				250V DC or AC rms
2V	1mV		± /0 = 0/ +4		
20V	10mV		±(0.5%+1)	1000V DC
200V	100mV				or 750V AC
1000V	1V	1	±(0.8%+2		

Remark:

Input impedance:10MΩ.

B. AC Voltage

D	Desclution		Occade and Deplementary			
Range	Resolution	UT39A	UT39B	UT39C	Overload Protection	
2V	1mV					
20V	10mV		$\pm (0.8\% + 3)$	1000V DC		
200V	100mV				or 750V AC	
750V	1V	±(1.2%+3)				

Remark:

- Input impedance:10MΩ.
- Frequency response:40Hz~400Hz.
- Display effective value of sine wave (mean value response).

C. DC Current

Range Resolution			Accuracy	Overland Protection	
		UT39A	UT39B	UT39C	Overload Protection
20µA	0.01µA	±(2%	+5)		
200µA	0.1µA	±(0.8%+3)		0.315A. 250V	
2mA	1µA	±(0.8%+1)		±(0.8%+1)	fast type fuse,
20mA	10µA			φ5 x 20mm	
200mA	100µA	±(1.5%+1)			1 10,000 - 2,250 - 200
10A/20A	10mA	±(2%+5)			Un-Fused

Remark:

- UT39A/UT39B At 10A Range: For continuous measurement ≤10 seconds and interval not less than 15 minutes.
- UT39C At 20A Range: For continuous measurement ≤10 seconds and interval not less than 15 minutes
- Measurement voltage drop: Full range at 200mV.

D. AC Current

Range	Accuracy				O and and Dankardian
	Resolution	UT39A	UT39B	UT39C	Overload Protection
200µA	0.1µA	±(1%+3)			0.315A. 250V
2mA	1µA		± (1%+3)		fast type fuse,
20mA	10µA	±(1%+3)			φ 5 x 20mm
200mA	100µA		±(1.8%+3	3)	
10A/20A	10mA		± (3%+5	Un-Fused	

Remark:

- UT39A/UT39B At 10A Range: For continuous measurement ≤10 seconds and interval not less than 15 minutes.
- UT39C At 20A Range: For continuous measurement ≤10 seconds and interval not less than 15 minutes
- Measurement voltage drop: Full range at 200mV.
- Frequency reaponse: 40Hz~400Hz
- Display effective value of sine wave (mean value response).

F Resistance Test

Range Resolution	D1-11		Accuracy	Overdeed Besteeties	
	Resolution	UT39A	UT39B	UT39C	Overload Protection
200Ω	0.1Ω		$\pm (0.8\%+3)$		
2kΩ	1Ω		±(0.8%+1) ±(0.8%+1)		1
20kΩ	10Ω				250V DC or AC rms
200kΩ	100Ω	±(0.8%+1)			
$2M\Omega$	1kΩ]
$20M\Omega$	10 k Ω		±(1%	+2)]
200MΩ	100kΩ	±[5%(read	ing-10)+10]		

Remark:

Open circuit voltage:

At 200MΩ range: approx. 3V Other ranges: ≤700mV

 At 200MΩ range, test lead is in short circuit, and it is normal to display 10 digits. During measurement, subtract the 10 digits from the reading.

F. The Mode UT39C:Frequency

Range	Resolution	Accuracy	Overload Protection	
2kHz	1Hz	± (2%+5)	0501140	
20kHz	10Hz	±(1.5%+5)	250V AC	

Remark:

- Input Sensitivity: ≤ 200mV.
- When the input voltage is ≥ 30V rms, no guaranteed accuracy.

G. The Mode UT39C:Temperature

Range	Resolution	Accuracy	Overload Protection
-40 °C ~0 °C		± (4%+4)	
1°C~400°C	1°C	±(2%+8)	250V AC
401 °C~1000°C		±(3%+10)	

H. Capacitance

Range	Desclution	Accuracy			Oundard Bestration
	Resolution	UT39A	UT39B	UT39C	Overload Protection
2nF	1pF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+31	
200nF	0.1nF	1	±(4%+3)		250V AC
2µF	1nF	±(4%+3)]
20µF	10nF		±(4%	+3)	1

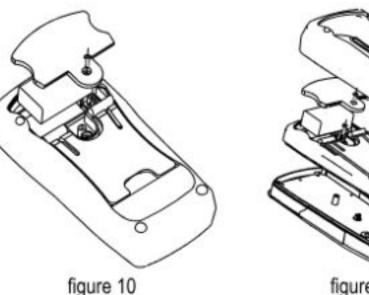
Remark:

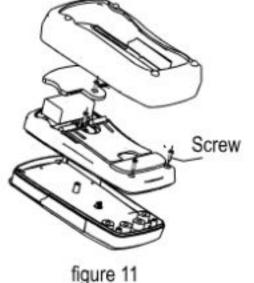
Testing signal: approx. 400Hz, 40mV rms.

I. Diodes and Continuity Test

Function	Range	Resolution	Input Protection	Remark
Diode	*	1mV	250V DC or AC	Open circuit voltage approx.2.8V
Continuty Buzzer	•••)	1Ω		Approx. <70Ω buzzer beeps continuously

J. Transistor Test


Range	Remark	Testing Conditions
hFE	Can measure NPN or PNP	Vce ≈ 2.8V
	transistor. Display range:0-1000ß	I bo ≈ 10µA


Maintenance

This section provides basic maintenance information including battery and fuse replacement instruction.

Marning

Do not attempt to repair or service your Meter unless you are qualified to do so and have the relevant calibration, performance test, and service information. To avoid electrical shock or damage to the Meter, do not get water inside the case.

A. Replacing the Battery (see figure 10) **∧** Warning

To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator 😝 appears.

To replace battery:

- 1. Disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals of the Meter.
- Press the Meter power off
- 3. Remove the screw from the battery compartment, and then take out the battery door from the battery compartment. 4. Remove the battery from the battery compartment. 5. Replace the battery with a new 9V battery (NEDA 1604 or 6F22 or
- 6. Rejoin the battery door and the battery compartment, and install the
- B. Replacing the Fuses (see figure 11)

To avoid electrical shock or arc blast, or personal injury or damage to the Meter, use specified fuses ONLY in accordance with the

following procedure. To replace the Meter's fuse:

- 1. Disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals
- of the Meter.
- 2. Press the Meter power off.
- Remove the holster from the Meter. 4. Remove the screw from the battery compartment, and then take out the battery door.
- Remove the screw inside the battery compartment and also the other two screws from the case bottom, and then separate the case bottom from the case top.
- 6. Remove the fuse by gently prying one end loose, and then take out the fuse from its bracket.
- 7. Install ONLY replacement fuses with the identical type and specification as follows and make sure the fuse is fixed firmly in the bracket. 0.315A. 250V fast type fuse, ϕ 5 x 20mm. Rejoin the case bottom and the case top, and install the screw.
 - 9. Rejoin the battery door from the battery compartment, and install the screw 10. Rejoin the holster and the Meter.

Replacement of fuses is seldom required. Burning of a fuse always results from the improper operation.

*** END ***

This opeating manual is subject to change without notice

LINI-T

UNI-TREND TECHNOLOGY (CHINA) CO., LTD.

No6, Gong Ye Bei 1st Road, Songshan Lake National High-Tech Industrial Development Zone, Dongguan City, Guangdong Province, China Tel: (86-769) 8572 3888 http://www.uni-trend.com